© Copyright Statement

All rights reserved. All material in this document is, unless otherwise stated, the property of **FPC International, Inc**. Copyright and other intellectual property laws protect these materials. Reproduction or retransmission of the materials, in whole or in part, in any manner, without the prior written consent of the copyright holder, is a violation of copyright law.

KALGOORLIE CONSOLIDATED GOLD MINES SUPER PIT SITE

Evaluation of FTC Combustion Catalyst as a means of reducing Geenhouse Gas Emissions and diesel fuel costs in mobile mining equipment.

August, 2003

Prepared by:

Fuel Technology Pty Ltd 3/18 Parry St FREMANTLE WA 6160 (PO Box 1271)

Tel: (08) 9335 6899 Fax: (08) 9430 5403 E-mail fueltech@iinet.net.au

ACN 100 293 490

CONTENTS

Executive Summary	Page 1
Background	Page 2
Introduction	Page 2
Test Method	Page 3
Photographs	Page 4
Test Results	Page 5
Greenhouse Gas Reduction	Page 9
Conclusion	Page 10

Appendix

"A"	Raw Data
<i>"B"</i>	Laboratory Density Results

$E_{xecutive}S_{ummary}$

The FTC/FPC Combustion Catalysts manufactured and marketed by Fuel Technology have proven in laboratory and field trials to significantly reduce fuel consumption under comparable load conditions and to also substantially reduce carbon emissions.

Following meetings with Kalgoorlie Consolidated Gold Mines Maintenance Superintendent Open Pits, Mr Lou Fornaro, it was agreed that a fuel efficiency study should be conducted on selected haul trucks at the Super Pit site employing an International Engineering test procedure namely "Specific Fuel Consumption" (SFC). This trial commenced on 19th July 2003 and was completed on 14th August 2003.

The net average efficiency gain (reduction in fuel consumption) measured by the SFC test method following FTC Combustion Catalyst treatment of test trucks fuel was **5.6%**.

BACKGROUND

The FTC Combustion Catalyst is the only fuel chemical yet proven by the world's leading testing authority, Southwest Research Institute (SwRI) San Antonio, Texas, to improve fuel efficiency in an as new 2500HP diesel engine operating at its most efficient state. SwRI also determined that FTC does not alter the physical or chemical properties of diesel fuel.

SwRI also determined, using the Caterpillar 1G2 Test (ASTM 509A) that there are no detrimental effects that could cause increased wear or deposit problems following catalyst treatment of fuel.

These findings have been verified by countless field studies in diverse applications, which have confirmed efficiency benefits for mine mobile equipment. Maintenance benefits documented include reduced wear metal profiles in lubricating oil and reduced soot. Combustion and exhaust spaces become essentially free of any hard carbon and a significant reduction in visible exhaust smoke of up to 30% is often achieved with continuous catalyst use.

FTC's action in producing fuel efficiency gains is to promote a faster fuel burn which releases the fuel's energy more efficiently. That is, a larger portion of the fuel burn occurs when the piston is closer to top dead centre.

INTRODUCTION

Equipment provided for this fuel efficiency evaluation comprised of three Caterpillar 793 series trucks, No's 202, 206 and 225. A 1.9 km test circuit was surveyed up "W" and "Y" haul ramps commencing approximately fifty mitres from the base of "W" ramp or the 260 level. This circuit was selected due to the opinion of site personnel that it was a more repeatable circuit that could be used for untreated and treated tests where no changes to the profile would occur over the three week test period.

Fuel Technology Pty Ltd organised for an independent contractor to manually treat each test trucks fuel with FTC Combustion Catalyst at time of refuelling over the three-week test period.

Test Method

The Specific Fuel Consumption (SFC) test procedure requires measurement of the mass of fuel consumed related to the work performed in hauling a measured load of ore over a defined distance.

A start point was selected on a reproducible section of the ramp haul and windrow markers marked. A point near the summit of the pit was defined as the end point of the haul route. The distance between these points was surveyed at 1.9km.

MacNaught Model M10 flow transducers complete with thermocouple probes were connected to the truck's fuel tank outlet and return fuel pipelines (*Photograph No. 1*).

These transducers, which have been calibrated to \pm 0.25% by a NATA certified laboratory, are connected to a KEP Minitrol Totaliser mounted in the truck cab. The thermocouple probes are connected to a dual reading digital thermometer, also mounted in the cab workstation (*Photograph No. 2*).

As the temperature of the fuel can vary relative to ambient temperature changes as well as increase significantly during a working shift, constant temperature monitoring is required to enable calculation of the mass of fuel consumed for each haul.

Prior to the test commencing a fuel sample is drawn and the density measured at the observed temperature and then corrected to the industry standard of 15°C by use of the Institute of Petroleum Density Correction Table, Volume VIII, Table 53B. Fuel samples tested for untreated tests were within the normal density measured for diesel fuel of 0.840 @ 15°C. Fuel samples tested at time of treated tests indicated a substantially lower density and for this reason fuel samples were submitted to an independent Laboratory, which confirmed a lower density to untreated tests. (*Laboratory report in Appendix*)

Following loading of the truck at each cycle, the truck is driven as per normal locked in second gear up the surveyed test circuit. The Minitrol totaliser and stopwatch are zeroed and as the truck passes the test circuit start point, the test engineer activates the totaliser and stopwatch. The truck is driven at full throttle to avoid driver variables over the haul route. Fuel temperatures are recorded at the mid haul point. Upon arrival at the end marker the stopwatch and Minitrol totaliser readings are recorded.

Test $E_{QUIPMENT}$

Photograph No. 1

Photograph No. 2

Test Results

Specific Fuel Consumption tests conducted on trucks 202, 206 and 225 in a working environment provided fuel efficiency gains of **4.6%**, **6.6%** and **5.6%** respectively averaging **5.6%** when SAE recommended formula of Tonne/km per kg of fuel is applied. Computer printouts follow in tables 1, 2 and 3. Graphical representation is graphs 1, 2 and 3. (*Work sheets in Appendix.*)

Table 1

1.9 172

SPECIFIC FUE	SPECIFIC FUEL CONSUMPTION TRUCK TRIAL											
Customer:	KCGM SUPERPIT	Engine Hrs										
Date:	16/07/2003	Amb; Temp; Start deg; C										
Truck No;	202	Amb; Temp; Finish deg; C										
Make/Model	Cat 793B	Circuit Distance Km Unit Tare Weight Tonne										

Fuel Sample	Density	Temp Deg C
	0.827	33.6
Corrected	0.840	15

UNTREATED

Run No	Time	Load Tonne	Haul	Time	Haul Time	Fuel	(Lt)	Fuel (Lt)	Fuel T	emp	Den	isity	Fuel	(kg)	Fuel (kg)	Fuel (kg)	Tonne.km
			Mins	Secs	Mins	In	Out	Consumed	In	Out	In	Out	In	Out	Consumed	Per Tonne	Per kg Fuel
1	12.15	187	8	00	8.00	125.33	69.45	55.88	23.8	48.1	0.834	0.817	104.51	56.72	47.79	0.1183	14.2720
2	1.50	212	8	08	8.13	127.83	70.71	57.12	25.7	50.5	0.833	0.815	106.42	57.63	48.79	0.1137	14.9539
3	2.15	216	8	17	8.28	130.22	72.52	57.70	27.1	50.6	0.832	0.815	108.29	59.10	49.19	0.1136	14.9854
4	2.50	214	8	10	8.17	128.55	71.42	57.13	28.2	52.2	0.831	0.814	106.80	58.12	48.68	0.1129	15.0664
5	3.15	231	8	35	8.58	134.11	74.72	59.39	29.7	53.1	0.830	0.813	111.27	60.76	50.51	0.1127	15.1597
6	4.15	208	8	15	8.25	130.38	72.63	57.75	33.1	54.3	0.827	0.812	107.86	59.00	48.87	0.1150	14.7751
7	4.50	218	8	18	8.30	131.22	73.13	58.09	33.6	54.7	0.827	0.812	108.52	59.38	49.14	0.1130	15.0802
8	10.10	207	8	12	8.20	127.94	70.10	57.84	21.5	45.7	0.836	0.818	106.89	57.37	49.52	0.1168	14.5404
9	10.40	216	8	17	8.28	129.33	71.70	57.63	23.7	50.8	0.834	0.815	107.86	58.42	49.44	0.1142	14.9110
10	11.05	229	8	26	8.43	131.94	73.40	58.54	25.5	51.5	0.833	0.814	109.87	59.77	50.10	0.1123	15.2086
11	11.35	219	8	14	8.23	129.38	71.75	57.63	26.8	52.4	0.832	0.814	107.62	58.38	49.24	0.1129	15.0888
12	12.05	229	8	32	8.53	133.88	74.45	59.43	28.4	53.2	0.831	0.813	111.20	60.54	50.67	0.1136	15.0379
Mean		216			8.28			57.84							49.327	0.114	14.923
Std Dev		11.98104564			0.1658			0.9753							0.8074	0.0018	0.2731
C.V		5.6%			2.0%			1.7%							1.6%	1.6%	1.8%

SPECIFIC FUEL	CONSUMPTION	TRUCK TRIAL

Date: 12/08/2003 Amb; Temp; Start deg; C 11.9 0.832 14.4 Amb; Temp; Finish deg; C Corrected 0.832 15	Truck No:	202	Engine Hrs	28343	I	Fuel Sample	Density	Temp Deg C
Amb; Temp; Finish deg; C Corrected 0.832 15	Date:	12/08/2003	Amb; Temp; Start deg; C	11.9			0.832	14.5
1. 0.			Amb; Temp; Finish deg; C		(Corrected	0.832	15

TREATE	D																
Run No	Time	Load Tonnes	Haul	Time	Haul Time	Fuel	(Lt)	Fuel (Lt)	Fuel T	'emp	Der	isity	Fuel	(kg)	Fuel (kg)	Fuel (kg)	Tonne.km
		1	Mins	Secs	Mins	In	Out	Consumed	In	Out	In	Out	In	Out	Consumed	Per Tonne	Per kg Fuel
1		222	8	<i>i</i> 11	8.18	129.49	73.03	56.46	19.0	46.0	0.829	0.810	107.32	59.13	48.19	0.1098	15.5347
2		201	8	, 03	8.05	125.27	69.99	55.28	25.0	50.2	0.825	0.807	103.30	56.47	46.83	0.1120	15.1336
3		203	8	, 04	8.07	127.05	71.60	55.45	27.8	52.1	0.823	0.805	104.51	57.67	46.84	0.1115	15.2098
4		224	8	i 11	8.18	128.99	72.97	56.02	29.4	53.0	0.822	0.805	105.97	58.73	47.24	0.1071	15.9275
5		223	8	11	8.18	130.22	73.85	56.37	31.3	54.9	0.820	0.803	106.79	59.33	47.46	0.1079	15.8125
6		243	8	25	8.42	134.83	75.89	58.94	33.2	55.2	0.819	0.803	110.40	60.95	49.44	0.1075	15.9473
7		228	8	16	8.27	132.16	74.51	57.65	35.0	56.1	0.818	0.803	108.04	59.80	48.24	0.1084	15.7549
8		215	8	, 06	8.10	129.33	71.98	57.35	38.4	56.7	0.815	0.802	105.42	57.74	47.67	0.1104	15.4233
9		222	8	12	8.20	129.77	72.64	57.13	39.5	58.9	0.814	0.801	105.67	58.16	47.52	0.1082	15.7547
					<u> </u>												
					<u> </u>												
					<u> </u>												
Mean		220			8.18			56.74							47.715	0.1092	15.6109
Std Dev		12.75190618			0.1118			1.1577							0.8186	0.0018	0.3011
C.V		5.8%			1.4%			2.0%							1.7%	1.6%	1.9%
% CHAN(GE:	Load Tonnes			Haul Time			Fuel (Lt)							Fuel (kg)	Fuel (kg)	Tonne.km
Treated-	Baseline	<u> </u>	1 '		Mins	1	1	Consumed	1					1	Consumed	Per Tonne	Per kg Fuel
Base	aline	2.1.40/		1	1 21%	1		1.01%	í						2 2704	-1 3%	1 6%

Table 2

SPECIFIC FUEL CONSUMPTION TRUCK TRIAL

Customer:	KCGM SUPERPIT	Engine Hrs
Date:	17/07/2003	Amb; Temp; Start deg; C
Truck No;	206	Amb; Temp; Finish deg; C
Make/Model	793B	Circuit Distance Km
		Unit Tare Weight Tonne

27374

1.9 172

Fuel Sample	Density	Temp Deg C
	0.829	29.8
Corrected	0.839	15

UNTREATED

UNIREA	IED																
Run No	Time	Load Tonnes	Haul	Time	Haul Time	Fuel ((Lt)	Fuel (Lt)	Fuel T	emp	Den	isity	Fuel	(kg)	Fuel (kg)	Fuel (kg)	Tonne/km
			Mins	Secs	Mins	In	Out	Consumed	In	Out	In	Out	In	Out	Consumed	Per Tonne	Per kg Fuel
1	2.50	220	8	38	8.63	128.83	71.92	56.91	33.1	54.9	0.827	0.811	106.50	58.35	48.16	0.1238	15.4667
2	3.25	223	8	41	8.68	128.83	71.70	57.13	34.9	56.5	0.825	0.810	106.34	58.09	48.24	0.1231	15.5560
3	3.55	235	8	49	8.82	129.27	71.86	57.41	36.1	57.2	0.825	0.810	106.60	58.19	48.41	0.1198	15.9736
4	4.25	238	8	60	9.00	131.11	72.47	58.64	37.1	57.8	0.824	0.809	108.02	58.64	49.38	0.1213	15.7760
5	5.55	233	8	51	8.85	129.94	71.97	57.97	38.0	58.2	0.823	0.809	106.97	58.22	48.75	0.1213	15.7846
6	10.50	224	8	40	8.67	129.22	71.37	57.85	24.4	47.3	0.833	0.817	107.63	58.29	49.34	0.1255	15.2495
7	11.20	227	8	46	8.77	129.72	72.25	57.47	26.3	51.5	0.832	0.814	107.86	58.79	49.07	0.1239	15.4486
8	12.50	209	8	26	8.43	126.33	70.60	55.73	32.0	55.3	0.828	0.811	104.54	57.26	47.28	0.1251	15.3104
9	2.15	233	8	45	8.75	129.55	72.03	57.52	33.7	56.2	0.826	0.810	107.05	58.37	48.67	0.1211	15.8092
10	2.50	209	8	20	8.33	125.77	70.49	55.28	35.4	57.0	0.825	0.810	103.77	57.08	46.69	0.1235	15.5044
11	4.20	216	8	39	8.65	128.33	71.48	56.85	39.9	59.8	0.822	0.808	105.47	57.74	47.73	0.1240	15.4443
Mean		224			8.69			57.16							48.339	0.123	15.575
Std Dev		10.09049958			0.1859			0.9669							0.8458	0.0018	0.2290
C.V		4.5%			2.1%			1.7%							1.7%	1.5%	1.5%

SPECIFIC FUEL CONSUMPTION TRUCK TRIAL

 Truck No:
 206

 Date:
 13/08/2003

Engine Hrs Amb; Temp; Start deg; C Amb; Temp; Finish deg; C

Fuel Sample	Density	Temp Deg C
	0.8292	15
Corrected	0.829	15

TREATED

Run No	Time	Load Tonnes	Haul	Time	Haul Time	Fuel	(Lt)	Fuel (Lt)	Fuel T	emp	Den	sity	Fuel	(kg)	Fuel (kg)	Fuel (kg)	Tonne/km
			Mins	Secs	Mins	In	Out	Consumed	In	Out	In	Out	In	Out	Consumed	Per Tonne	Per kg Fuel
1		208	8	27	8.45	127.66	74.30	53.36	28.9	52.6	0.819	0.803	104.59	59.63	44.96	0.1193	16.0592
2		212	8	29	8.48	127.66	74.19	53.47	33.9	55.7	0.816	0.800	104.15	59.38	44.76	0.1175	16.2990
3		247	9	07	9.12	132.49	76.84	55.65	34.7	56.8	0.815	0.800	108.01	61.44	46.56	0.1119	17.0967
4		251	9	20	9.33	136.88	79.41	57.47	35.8	57.7	0.815	0.799	111.49	63.45	48.04	0.1144	16.7297
5		227	8	54	8.90	134.33	78.37	55.96	36.7	57.5	0.814	0.799	109.32	62.63	46.69	0.1179	16.2361
6		229	8	55	8.92	133.83	78.20	55.63	37.8	59.1	0.813	0.798	108.80	62.40	46.40	0.1166	16.4202
7		244	8	59	8.98	131.77	75.79	55.98	38.9	59.7	0.812	0.798	107.04	60.44	46.59	0.1128	16.9635
8		230	8	45	8.75	129.72	75.80	53.92	39.7	59.8	0.812	0.798	105.29	60.45	44.84	0.1124	17.0327
Mean		231			8.87			55.18							46.107	0.1153	16.6046
Std Dev		15.74801575			0.3004			1.4511							1.1547	0.0028	0.4019
C.V		6.8%			3.4%			2.6%							2.5%	2.4%	2.4%

27859

9.8

% CHANGE:	Load Tonnes	Haul Time	Fuel (Lt)]	Fuel (kg)	Fuel (kg)	Tonne/km
Treated-Baseline		Mins	Consumed		Consumed	Per Tonne	Per kg Fuel
Baseline	3.00%	2.04%	-3.46%		-4.62%	-6.2%	6.6%

Table 3

SPECIFIC FUEL CONSUMPTION TRUCK TRIAL

Customer:	KCGM SUPERPIT	Engine Hrs	5877
Date:	19/07/2003	Amb; Temp; Start deg; C	
Truck No;	225	Amb; Temp; Finish deg; C	
Make/Model	793B	Circuit Distance Km	1.9
		Unit Tare Weight Tonne	167

Fuel Sample	Density	Temp Deg C
	0.824	38.1
Corrected	0.840	15

-3.39%

-5.3%

5.6%

UNTREATED

Run No	Time	Load Tonnes	Haul	Time	Haul Time	Fuel	(Lt)	Fuel (Lt)	Fuel T	emp	Den	sity	Fuel	(kg)	Fuel (kg)	Fuel (kg)	Tonne/km
			Mins	Secs	Mins	In	Out	Consumed	In	Out	In	Out	In	Out	Consumed	Per Tonne	Per kg Fuel
1	9.40	224	8	26	8.43	137.11	80.05	57.06	24.9		0.833	0.851	114.25	68.11	46.14	0.1174	16.1013
2	10.10	207	8	18	8.30	135.77	80.32	55.45	26.9		0.832	0.851	112.95	68.34	44.60	0.1186	15.9317
3	10.35	212	8	19	8.32	136.05	80.43	55.62	29.0		0.830	0.851	112.98	68.44	44.54	0.1169	16.1682
4	11.05	214	8	45	8.75	139.55	83.35	56.20	31.2		0.829	0.851	115.67	70.92	44.75	0.1168	16.1764
5	11.35	238	8	55	8.92	141.72	82.52	59.20	33.3		0.827	0.851	117.26	70.22	47.04	0.1156	16.3574
6	12.10	210	8	23	8.38	137.05	80.93	56.12	35.2		0.826	0.851	113.20	68.86	44.34	0.1170	16.1547
7	12.55	227	8	37	8.62	138.83	81.37	57.46	34.5		0.827	0.851	114.74	69.24	45.51	0.1149	16.4508
8	1.25	216	8	39	8.65	139.44	81.92	57.52	36.6		0.825	0.851	115.04	69.71	45.33	0.1177	16.0526
9	2.40	216	8	25	8.42	137.11	80.82	56.29	38.3		0.824	0.851	112.95	68.77	44.18	0.1148	16.4707
10	3.25	237	8	58	8.97	141.88	82.14	59.74	39.9		0.823	0.851	116.72	69.89	46.83	0.1153	16.3906
11	3.55	226	8	37	8.62	139.22	81.70	57.52	41.2		0.822	0.851	114.41	69.52	44.89	0.1137	16.6331
12	4.20	232	8	47	8.78	140.66	81.97	58.69	42.4		0.821	0.851	115.47	69.75	45.72	0.1140	16.5815
Mean		222			8.60			57.24							45.323	0.116	16.289
Std Dev		10.56975387			0.2281			1.3980							0.9539	0.0016	0.2220
C.V		4.8%			2.7%			2.4%							2.1%	1.4%	1.4%

SPECIFIC FUEL CONSUMPTION TRUCK TRIAL

•••••••••••••••••••••••••••••••••••••••						
Truck No:	225	Engine Hrs	6375	Fuel Sample	Density	Temp Deg C
Date:	14/08/2003	Amb; Temp; Start deg; C			0.827	15
		Amb; Temp; Finish deg; C		Corrected	0.827	15

TREATED

Baseline

3.55%

1.47%

Run No	Time	Load Tonnes	Haul	Time	Haul Time	Fuel	(Lt)	Fuel (Lt)	Fuel T	emp	Den	sity	Fuel	(kg)	Fuel (kg)	Fuel (kg)	Tonne/km
			Mins	Secs	Mins	In	Out	Consumed	In	Out	In	Out	In	Out	Consumed	Per Tonne	Per kg Fuel
1		241	8	47	8.78	139.16	83.98	55.18	38.0	51.2	0.811	0.801	112.82	67.29	45.52	0.1110	17.0284
2		227	8	43	8.72	137.94	84.76	53.18	38.9	52.2	0.810	0.801	111.73	67.86	43.87	0.1108	17.0631
3		238	8	45	8.75	139.94	84.93	55.01	39.3	53.0	0.810	0.800	113.32	67.95	45.37	0.1115	16.9602
6		246	8	58	8.97	139.94	85.27	54.67	39.7	53.2	0.810	0.800	113.28	68.21	45.07	0.1086	17.4092
7		234	8	49	8.82	138.38	85.48	52.90	41.1	53.9	0.809	0.799	111.88	68.33	43.55	0.1081	17.4958
8		228	8	48	8.80	137.38	85.25	52.13	42.1	54.3	0.808	0.799	110.98	68.13	42.84	0.1079	17.5171
9		218	8	32	8.53	137.94	85.98	51.96	43.5	55.0	0.807	0.799	111.29	68.67	42.62	0.1101	17.1642
10		221	8	38	8.63	138.55	85.59	52.96	44.6	55.4	0.806	0.798	111.67	68.34	43.34	0.1111	17.0112
11		212	8	30	8.50	137.77	86.53	51.24	45.6	56.2	0.805	0.798	110.95	69.03	41.91	0.1100	17.1810
Mean		229			8.72			53.25							43.789	0.1099	17.2034
Std Dev		11.27066004			0.1467			1.4146							1.2855	0.0014	0.2164
C.V		4.9%			1.7%			2.7%							2.9%	1.2%	1.3%
%CHAN	GE:	Load Tonnes			Haul Time			Fuel (Lt)							Fuel (kg)	Fuel (kg)	Tonne/km
Treated-	Baseline				Mins			Consumed							Consumed	Per Tonne	Per kg Fuel

-6.97%

Graph 1

KCGM SUPERPIT Caterpillar 793B (#DT202) Specific Fuel Consumption Test

Graph 2

KCGM SUPERPIT Caterpillar 793B (#DT206) Specific Fuel Consumption Test

Graph 3

KCGM SUPERPIT Caterpillar 793B (#DT225) Specific Fuel Consumption Test

Greenhouse Gas Reduction

A gross reduction of **5.6%** of the current estimated annual fuel consumption of 80,000 kL translates to a <u>12,952 tonnes per annum</u> reduction in CO_2 emissions, based on the formula outlined in Worksheet 1 of the "Electricity Supply Business Greenhouse Change Workbook". Our estimate is based on the following calculations:-

 $(80,000 \text{ kL x } 38.6 \text{ x } 74.9) \div 1000 = 231,291 \text{ tonnes } CO_2 \text{ per annum}$ - 5.6% (75,520 kL x 38.6 x 74.9) ÷ 1000 = 218,339 tonnes CO_2 per annum CO_2 reduction by application FPC Catalyst 231,291 - 218,339 = 12,952 tonnes

CONCLUSION

This carefully controlled engineering standard test procedure conducted on a selection of Kalgoorlie Consolidated Gold Mine's fleet provides clear evidence of average reduced fuel consumption of **5.6%**.

A fuel efficiency gain of **5.6%**, as measured by the SAE Specific Fuel Consumption test method, if applied to the total fuel currently consumed by KCGM mobile equipment of approximately 80ML p.a. at a cost of \$0.40/L, will result in a <u>net</u> saving in excess of <u>\$1,400,000 per annum</u>.

Additional to the fuel economy benefits measured is a reduction in greenhouse gas emissions of <u>12,952 tonnes per annum</u> due to more complete combustion of the fuel. Further, the more complete combustion will translate to significant reduction over time in engine maintenance costs. FTC/FPC also acts as an effective biocide.

Appendix "B"

Laboratory Density Results